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A.traet-Hart's constitutive law for inelastic deformation ofmetals in uniaxial loading is described.
For sufficiently low temperature or high strain rates, Hart's constitutive law in uniaxial loading is
accurately approximated by a simpler law termed the visco-plastic approximation. In the visco­
plastic approximation Hart's "plastic" element reduces to a classical rate independent power-law
work hardening plastic material. An error bound for the visco-plastic approximation is estimated.
Analyses are carried out for some simple deformation histories, including a constant plastic strain
rate test, to elucidate the content of Hart's law.
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NOTATION
"anelastic" strain, [dimensionless]
constant in non-linear dashpot description, [time]-I
slope of Y vs x trajectory in constant t test
contribution of r properties to I1IX, [dimensionless]
constant in equation of plastic state, [dimensionless]
constant in equation of plastic state, [timer I
Young's modulus, [stress]
constant used to determine D, [timer I
dYldx in a constant t test
a function of .l. with value close to I
elastic shear modulus, [stress]
isocline with slope b in const. t test
hardness coefficient r evaluated at y =x, [dimensionless]
derivative of r with respect to y at y =x, [dimensionless]
constant in Hart's hardening function r, [dimensionless]
ell'ective testing machine still'ness, [stress]
ell'ective combined sample and machine still'ness, [stress]
constant used for evaluating r, [dimensionless]
power law exponent for the frictional dashpot, [dimensionless]
the "anelastic" modulus, [stress]
I if 1 in O2 (Fig. 4~ 0 otherwise
"activation energy for self dill'usion", [cal g-1 mol-I]
gas constant = I.986cal (g-I mol-I K-I)
absolute temperature
time
time at the end of load history
dimensionless (1* = (1*IG
x at end of load history
the value of x on 10 corresponding to y....
dimensionless (I• .. (lJG
value of y at end of load history
the maximum value of y in the load history
"plastic" strain = strain in Ii element, [dimensionless]
a particular value of Ii, [timer 1
the value of lio which gives the best 11«
accumulated « while 1 in 0 1
accumulated « while 1 in O2
accumulated « predicted by visco-plastic approximation
«.p if initial (1* is 0
1 + (klm)[l - (xoly..,.n
[(Dlli)x'"]A, a useful parameter, [dimensionless]
[(Dllio)(x..J"']A
60 used to minimize 11«
DIl, a small parameter (not related to 6)
DCI.lt, a small parameter (not related to 6)
error bound for « due to visco-plastic approximation
tiJbtest bound on 11«
inelastic strain = a + IX, [dimensionless]
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E, elastic strain
E, total strain = E, + E = E, -to IX + a
i· D«(1·/G)"', [timer I

II dummy variable for integration
y curve defined by x(t). )(t)

Yo curve x(t). )(t) when Ii = ao
r hardening coefficient for "plastic" state, [dimensionless]
). constant used in plastic state relation ~ 0.15
o accessible region on x. y plane for a given y.... and XT

0, region of 0 below Yo
O2 region of 0 above Yo

(1 total true stress
(1. "anelastic" stress carried by plastic branch in Hart's model
(11 stress carried by "frictional" element in Hart's model
(1. "hardness" = internal state variable in Hart's model, [stress].

INTRODUCTION

Hart and co-workers[I-3] have proposed a constitutive relation for inelastic deformation
of solids. This law, based on an earlier simpler law[4], relates the stress to the deformation
history using state variables which evolve during deformation.

One motivation for the construction of such constitutive laws is to accurately
characterize material behavior for use in structural and metal forming computations. Since
the single constitutive law is meant to encompass transient effects due to various
deformation mechanisms it must be fairly complex. If it fulfills its purpose, however, it
should reduce to the common simpler descriptions such as elasticity, rate-independent
plasticity, and power-law creep to the same extent that real material response reduces to
these descriptions. With this view, the constitutive law itself may be viewed as a physical
material subject to investigation. One direct way ofgaining understanding ofthe constitutive
law is to examine its predictions for various stress or strain histories. Unfortunately it has
been difficult to generate stress-strain curves either analytically or numerically with Hart's
constitutive law.

Analytic results require the solution of non-linear differential equations. Also, the
nearly singular nature of the governing equations for some temperature and strain rate
regimes has impeded numerical solutions. This numerical problem has been commonly
circumvented by use of an approximation to the full constitutive law termed "the visco­
plastic limit" or the "low temperature" approximation[I,5-7]. Another approach, taken
in this paper, is to determine when and how the form of the constitutive law reduces to
such a simpler description. In some sense this process is analogous to the construction of
a portion of a so-called "deformation map" for the constitutive law.

This paper attempts to elucidate Hart's law by examining uniaxial load histories (with
possible unloading but no· load reversal) with primary interest on the "visco-plastic"
approximation ("visco-plastic limit"). In this approximation, proposed by Hart[l], one of
the elements in the model becomes rate independent. The validity of this approximation
has been established by the asymptotic results of Hui[8] for the special case of constant
inelastic deformation rate. The main result presented here is that the visco-plastic
approximation is close to the full constitutive law for a wide range of temperatures and
deformation rates. The results we obtain are strictly valid only for small strain uniaxial
deformation, though some greater generality is anticipated (but not demonstrated).

The organization of the paper is as follows: Hart's constitutive law for uniaxial
deformation, as presented in Hart[l], is described in an introductory manner. The visco­
plastic approximation is then defined. An upper bound for the error in using this
approximation is found. The specific cases of constant "plastic" state, constant "plastic"
strain rate, the relaxation test, and constant inelastic strain rate are then discussed.

No attempt will be made here to justify or critique the constitutive law either from
the point of view of its phenomenological relation to experiments or its microscopic
rationalization.



The "visco-plastic" approximation to Hart's constitutive law for inelastic deformation 695

~---O

O.
'ANELASTlC' ELEMENT

t= &T -I
a -1- a ---l 'P1.ASTIC'ELfMENT

---~

0-------1

1------ & -----o~ I
ELASTIC ELEMENT

'fRICTK»lAL' ELEMENT

Fig. 1. The assembly of elements in Hart's constitutive model.
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Fig. 2. The four elements in the model. Material constants and state variables used in the definition
of the clements arc shown in { }'s: (a) the clastic spring, (b) the non-linear "frictional" dashpot,
(c) the linear anelastic spring, (d) the plastic element (the evolution of the state variable /1- depends

on k and C and the constant D can be written in terms of f. Q. Rand T).

UNIAXIAL CONSTITUTIVE RELATION

The basic constitutive law in uniaxial tension for small deformations, as presented in
Hart[l], can be viewed as four simpler elements in combination. This is shown in Fig. 1.
The four elements are shown separately in Fig. 2 They are two linear springs, a non-linear
dashpot and a special rate-dependent "plastic" element with memory. For problems with
finite and/or multidimensional deformation only rate measures of strain a, t, and ci are
sensibly used in the constitutive law. For conceptual simplicity, however, we will make use
of the strain quantities, a, £, tt and at which are only well defined for small monotonic
uniaxial deformations. Thus, the results we obtain cannot be rigorously applied to situations
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with large, multiaxial or reverse deformation histories.
The four basic elements in the constitutive law are described below.

(a) Figure 2(a) shows the linear spring whose deformation rate is the elastic strain rate
i. and which carries the full true stress (1. E is the usual Young's modulus. This element
is in series with the other three elements

i. = u/E. (1)

(b) Figure 2(b) shows the non-linear dashpot. The deformation rate of this element is
equal to the total inelastic rate i. The deformation rate i (which is the deformation rate
measured relative to the current configuration and thus only equal to de/dt for small
deformations) is related to the "frictional" stress af> by the power law relation

(2)

where a* is a material constant which also depends on temperature, .It is of the order of
the elastic shear modulus G, and M is a material constant of the order of 8-10.

(c) Figure 2(c) shows the second linear spring. The deformation rate in this element
is caned the anelastic rate and is denoted by a. It is related to the stress a. carried by this
element by

u. =.lta (3)

where.lt is the same as in the previous element.
(d) Figure 2(d) shows the "plastic" element (also caned the Ii element) which also

carries the stress (1•• The deformation rate of this element is Ii. This element is of greatest
interest in these constitutive equations and has both a rate and history dependence. Before
Hart[l] all of the inelastic deformation rate was considered by Hart to be equal to Ii and
the two previously mentioned elements (the linear anelastic spring and the non-linear
anelastic dashpot) were nonexistent in the model.

The plastic element is defined by the relation between the time histories of a. and ci.
This is expressed in two steps: the first being the instantaneous relation between a. and ci
at fixed plastic state (calJed "hardness"[l]), and second being the rule for the evolution of
the "hardness".

The plastic state ("hardness state") is characterized by the single scalar measure (1*.

The only mechanical manifestation of the state (1* is through its inftuence on the relation
between (1. and ci. Curves of (1. vs ci at constant state make up a one parameter family,
one curve for each value of a*.

The following four mutually equivalent expressions state the relation between (1. and
ci at fixed state (1*:

or

or

Ii =D(a*/G)'"[ln(a*/a.)] - 11),

In(aJG) = In(a*/G) _ e·-),(ln(dIDI-",ln(cr"/G))

(4a)

(4b)

(4c)
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Fig. 3. Constant state relation. (a) "Plastic" stress 11. vs "plastic" strain rate Ii at a constant state
11· (log-log). Three constant state curves are shown. (b)I1. vs 11· at constant Ii.

In(O'*/O'.) = (i·/eW· (4d)

where A and m are material COBstants and are said[3] to be of the order of A :::: 0.15
and m:::: 4-5. In these equations D is a temperature-dependent constant given by
D =f exp( - Q/Rn where f and Q are material constants, R is the gas .constant and T is
the absolute temperature, D is important since it appears in the equations paired with the
plastic strain rate Ii and can vary by many orders ofmagnitude with reasonable temperature
variations. Equation (4d), using t* =: D(O'*/GY", is the form employed by Hart[l].

Figures 3(a) and (b) show this relation plotted two ways (using m =4, A. =0.15). Figure
3(a) plots In(O'.) vs In(li) in the manner common for relaxation tests (which are commonly
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assumed to be constant 0'* tests and in which O'r is sometimes neglected). The basic features
of 0'* can be observed in Fig. 3(a) or eqn (4b) and are claimed[l] to be accurate
representations of experimental data.

All of the constant 0'* curves have the same shape (an upside down and backward
exponential). Equation (4b) implies that different 0'* constant curves can be obtained from
each other by rigid displacement along a straight line with slope (11m). The saturated value
of 0'. at high strain rate is (i*. Figure 3(b) (showing curves of constant Ii) and eqn (4c) also
express the equation of constant plastic state. Note that 0'* is strictly greater than 0'. for
all plastic strain rates d. Also, at high eX, 0'* is nearly equal to 0'. for a wide range of 0'•.
More precisely, if b, defined by {) == [(D/eX)(i*/G)",]A, is small then 0'* =::: 0'•. The parameter
b will appear frequently later in our discussion.

One may observe in Fig. 3(b) or eqn (4c) that the "hardness" has the quality (unexpected
from its name) that at a given strain rate the stress 0'. ultimately decreases for large values
of "hardness".

In Hart's model, the evolution (rate of change) of 0'* depends on its current value and
on the current plastic deformation rate eX. The evolution of the state variable 0'* can also
be expressed in terms of the current values of 0'. and 0'* since the constraint eqn (4)
(equation of "plastic state") always applies. Any of the following mutually equivalent
"hardening" relations may be used:

d(ln O'*)/dlX = f, d(i* =O'*f dlX, cT* = (i*feX (5a-c)

where f is a specified function of any two of the three variables 0'*, 0'. and Ii. The
"hardening" coefficient f is not as well constrained by experiment as the plastic state
expressions (4). f is given in Hart[l] as a representation of the data in Wire et al.[9]

(6)

where C, and k are material constants and m is the same as in eqn (4). Korhonen et al.[tO]
have advocated a different description of f than eqn (6). Note for future reference that in
eqn (6): (1) f is a smooth function of 0'. and 0'* in the vicinity of 0'. = (i*, and (2) f(O'*, 0'.)
is a monotonic increasing function of 0'. for fixed 0'*.

The four elements named above are assembled as in the schematic of Fig. 1. The
geometric constraints implied by this figure are that the total deformation rate i l is the
sum of the inelastic rate i and the elastic rate i e • The total inelastic deformation rate is
the sum of the anelastic rate d and the "plastic" rate eX, Le.

i = d + eX. (7a,b)

Similarly, the force balance implied by Fig. 1 shows that the total stress 0' is the sum of
the "frictional" stress (if carried by the non·linear dashpot and the "anelastic" ("plastic")
stress 0'. carried by both the anelastic spring and the "plastic" element

0' = (if + 0'., (8)

Equations (1)-(8) specify Hart's constitutive model in one .dimension completely
(assuming no load reversal and infinitesimal deformation). To determine a relation between
stress and strain, eqns (1)-(8) must be solved simultaneously together with the appropriate
initial conditions for the two state variables a, CT· and information about the deformation
history (e.g. £t(t) or u(t». For specified u(t) or 8t(t) the equations can be reduced to the
solution of two or three coupled first-order differential equations, respectively.
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THE VISCO·PLASTIC APPROXIMATION

Hart's model, as presented above, is conceptually simple except for the behavior of
the plastic element. However, this element has, in a few calculations[5,7] been replaced
by a simpler rate independent element. This substitution, to be described below, is termed
the "visco-plastic" approximation. In the "visco-plastic" approximation, first discussed by
Hart[l], the i'nelastic constitutive law reduces to a (non-linear) viscous element in parallel
with the series combination of a rate-independent plastic element and a linear spring.

The approximation, usually motivated for computational reasons, has not been
rigorously justified. In the following sections we will rationalize the use of the visco-plastic
approximation for some time, temperature and stress regimes.

The visco-plastic approximation in thi~ paper, like that in Ref. [7], is somewhat stricter
in interpretation than that which has been used in some numerical work. We interpret the
visco-plastic approximation as a substitute constitutive law to be used throughout a
deformation history. This is in contrast to the visco-plastic "limit" of only using the
approximation at particular points in the history where the nearly singular behavior of
the full constitutive law causes numerical problems.

The visco-plastic approximation is defined by the following replacements for eqns (4)
and (5) (eqn (6) or its equivalent, is maintained):

(1. = (1* and d(1*/da = (1*r«(1*,(1a = (1*)
q* =0
ci =0

ifci>O
ifci=O
if (1. < (1*.

(9)

The visco-plastic approximation can be expressed in integral form as

(lOa)

(lOb)

where «(1.)max is the maximum value of (1. that has occurred in the loading history, (1~ is
the initial value of (1* and ayp denotes the accumulated plastic strain (i.e. fci dt) using the
visco-plastic approximation.

We have set a = 0 at the start of the deformation history (t = 0) for simplicity.
Equations (9) and (10) describe classical, rate-independent, work hardening, plasticity.
Using the form for r in eqn (6)[1] we obtain by evaluating the integral in eqn (lOa) (and
assuming /Xyp > 0)

/Xyp = (l/mC){[«(1.)m.JG]'" - [(1~/G]"'}. (ll)

The work hardening is by a power law in this case. Thus, within the visco-plastic
approximation, the "plastic" element in Hart's model is replaced with a more conventional
plasticity element. If ci is always positive we may replace the "plastic" element with a
deformation element where (1. only depends on the current value of /x.

Perrect plasticity in the "plastic" element is obtained by the additional limit C -. O.

MOTIVATION FOR THE VISCO-PLASTIC APPROXIMATION

In Hart's[l] original brief description the limiting behavior defined by eqn (9), (10),
or (11) is obtained by the limit A-. O. This is apparently a typographical error since the
limit does not lead to the desired approximation.
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Fig. 4. Stress-state trajectory i' during general deformation. Regions and points used in the analysis
are marked.

On the other hand, as argued in Van Arsdale et al.[7], if D is very close to 0 (low
temperature) then, for a wide range of strain rates and stress, (1. is approximately equal to
(1* by eqn (4c). Thus, for non-negligible Ii, r in eqn (6) can be evaluated with great accuracy
using u. = (1*. By eqn (5), (1* only evolves when ci is non-negligible. This roughly motivates
use of the visco-plastic approximation, eqn (9) or eqn (10).

Note that if D is not exactly zero then setting (1. = (1* is in no wayan approximate
solution to eqn (4a). This is because eqn (4a) becomes singular for u. = (1*. In what sense,
then is the visco-plastic approximation a good approximation for finite values of D?

ERROR BOUND FOR THE VISCO·PLASTIC APPROXIMAnON

In this section we establish an approximate upper bound, (aoc)lDh.. for the difference
between the accumulated plastic strain predicted by the full constitutive law and that
predicted by the visco-plastic approximation in eqns (22c) and (23b). The error bound is
expressed in terms of the maximum value of (1. in the deformation history and the total
time t T of the history, or, more approximately in terms of tT and CXvpe (the plastic strain
that the visco-plastic ,approximation predicts for a special comparison test). The argument
which follows is this: both a lower bound and an upper bound for the accumulated plastic
strain are found and related to the strain that the visco-plastic model would have computed.
The upper bound is expressed in terms of a parameter. The parameter is then chosen so
as to minimize the difference between the two bounds. An error estimate is thus obtained.
The details that Collow are straightforward but somewhat involved.

For notational convenience we define the Collowing variables which are used with
reCerence to Fig. 4. Let x = (1*/G and y = (1JG, i.e. the stress quantities are normalized by
the shear modulus G. Let )(t) (0 < t < tT) denote an arbitrary stress history, where tT

denotes the duration ofthe stress history. Let x(t) be the corresponding history oC"hardness"
using the full constitutive law. Let Yo and Xo denote the initial values of uJG and (1*/G at
time t = O. The final value oC x and y at time tr are denoted by XT and YT, respectively.
The maximum value of )(t) in the time interval [0, tT] is y_. The stress and hardness
history oC the plastic element consistent with the Cull constitutive law can be represented
by the curve "I =(x(t), )(t». Note that et* > 0 implies that x(t) is a monotonic function of
t. Therefore, y is a single valued function of x on .,. The curve ., lies completely in the
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region 0 bounded by the x-axis, the line x = XT, the line y = y_ and the line y = x. Let
')'0 be a constant acurve for fixed D (i.e. fixed temperature) defined by

Y = x exp {- [(Djcio)x"']).}

where tio is a specified number whose value is to be assigned later in the argument The
maximum of y on ')'0 is attained when [(Djtio)x'"],t = IjmA., which is of order unity and
occurs to the right of the domain shown in Fig. 4. We define ~o = [(D/tioXxmaJ"],t where
x....x is defined as the value of x corresponding to Ymax on ')'0' Note that x_ > Ymax' We
assume, as must be checked when tio is finally assigned a value, that Ymax and ao are such
that ~o « 1. With this assumption the curve ')'0 is monotonic and is accurately described
by

Y = x(l - ~o)· (12)

The assumption ~o « 1 implies that ')'0 divides 0 into two non-intersecting regions 0 1
and O2 , where O2 is the region between the line Y = x, the curve ')'0 and the line
Y = Ymax as shown in Fig. 4.

The following assumptions regarding the function r(O'*, 0'.) or, with a slight abuse of
notation, r(x, y), are used.

(a) r(x, y) is continuously differentiable in O2 and r(x, x) > O.
(b) YI > Y2 implies r(x,YI) > r(X'Y2) for all x > O. These conditions are satisfied by

eqn (6).

We now establish a lower bound for the accumulated plastic strain IX. The following
observations are used: O'.(t) < O'*(t) at all points in a loading history and hence y < x on
')'. r(x,y) is a monotonic increasing function of y so that 1/r(x,y) > l;r(x, x). This implies

(13)

assuming Ymax ~ Xo' If Ymax < Xo then lXyp = 0 by eqn (lOb). Thus, the accumulated plastic
strain predicted by the visco-plastic approximation, IXvp , is a lower bound for lX.

We will now establish an upper bound for the accumulated plastic strain (X during the
load history')'. The total plastic strain (X accumulated during the deformation history ')' is
equal to the sum of lXl and (X2' where lXl and lX2 are the plastic strain accumulated in 0 1

and O2 , respectively. An upper bound for the accumulated plastic strain in region 0 1 is

(14)

since ci ~ ao in 0 1 ,

We next find an upper bound for lX2 in O2 assuming Ym... ~ Xo' The following identity
is an immediate consequence of condition (a) above and eqn (4c):

(15a)
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where ~ = [(D/ti)xm
]. Equation (15a) above and ~ < ~o in n2 implies that

[(x,)') ~ [(x, x) - x~oiJr/oyl,=x (15b)

to first order in b. All inequalities from this point on are correct at least to first order in
b. Generalization to higher order does not seem sufficiently rewarding to warrant the
added complexity in the argument. If we define

h(x) == [(x, x)

then by eqns (ISb) and (5c)

and (16)

ti = Xjx[(x,y) ~ x{xh(x)[1 - (hl(X)/h(x))x~o]} -1

or

ti ~ (Xjxh(x»[1 + c5oxh 1(x)/h(x)]

(17)

(18)

in n2 • We now define a function P(x) which allows us to keep track of when y is in n2 .

P(x) takes on the values 0 or 1 depending on y as follows:

P(x) = 1 if (x,y) on y is in n2

P(x) =0 otherwise.

Inequality (18) above implies that

1X2 ~ IX.... [P('O/"h(,O] d" + boIx.... [P(,,)h 1(,,)/h
2(,,)] d"

Xo Xo
(19a)

(19b)

In deriving the above inequalities, we have made use of the facts that h(x) = [(x, x) > 0,
[(x,y) is monotonically increasing in y, P(x) ~ 1, h(x) is smooth and that
xma• ~ (1 + c5o)Yma.' If the test starts with a high value of (1* so that Xo > YJIUl. then the
visco-plastic approximation predicts that IX = czYP = O. Equations (19) above may then be
made sensible by using the value Xo for y...... This substitution is justified because it is
equivalent to replacing the stress history with one that has greater stress (and hence greater
accumulated cz) at every instant in time.

Inequalities (13), (14) and (19b) bound the accumulated plastic strain IX from above
and below

(20a)

with

(20b)
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and

B = l/h(Ymall) +f-' h1(tt)/h 2(,,)dtt
"'0

(2Oc)

where &a is an error estimate and B depends only on properties of f.
The value of «0 is now chosen so that &a is minimized. The minimum of &a, (&a)mln,

is obtained by solving d(&a)/dcio =0 for «0' Carrying out this procedure (using
00 = [(D/do)}':uJA to first order) yields

(21a)

(21b)

(21c)

where F(l) = [ll H + 1]1/(1 Hl. F(l) has the value of 1.1 when l =0.15 and may be set to
1 for practical purposes. B is defined in eqns (2Oc) and (16) and is determined by the form
of the hardening coefficient r. (4a)min is our best estimate of the error in plastic strain by
using the visco-plastic approximation.

For the error estimate to be valid one needs to check that (OO)min« 1 since this
condition was assumed throughout the derivation. Comparison of eqns (21c) and (20b)
shows that the 1'0 curve which minimizes the error estimate causes most of the error
estimate to come from 02' i.e. near the curve Y = x.

(4a)min can be evaluated if the hardening coefficient is given by eqn (6)

B=PY:ulC (22a)

(22b)

(22c)

where fJ == 1 + (k/m)[l - (XO/Ym.ll)"'] ranges between 1(if Xo = Ymax as in an ideal relaxation
test) and 1 + kim (if Xo =0 as with a totally unhardened material). Dropping all terms of
order 1 (i.e. P, F(l), l -.t!o Hl) the error estimate becomes

(4a)mln ~ <Y:.JCXDCtr)A/(1 H)

= ma"po(DCtT).t!( 1+A)

(23a)

(23b)

where a"po represents the strain predicted by the visco-plastic approximation for the given
peak stress Ymall but with Xo =0 (whether or not Xo =0 in the actua110sd history).

The error bound developed in this section (eqns (21e), (22e) or (23b» is crude in that
it only uses the peak stress Ymu and the duration of the load history 'T' The bound is for
the maximum error for every history described by these two numbers. It is possible that
the visco-plastic approximation is mucb better tban tbe bound for particular sections of
some load histories. Note tbat the bound is expressed in terms of tbe stress a. and not tbe
total stress a. For £ > 0, however, a > a. and the bound is still applicable if the peak value
of tbe total stress a is used in the calculation.

In some applications it may be of interest to estimate tbe error in stress when strain
is controlled. The error in a. for given« can be estimated by calculating a. with the visco­
plastic approximation (eqn (11» from a. The error in a. is then roughly given by(daJd«"p).&a.
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Fig. 5. Schematic diagram of a material test. In ~Ioad relaxationM the load poin. P is held fixed after
extension.

ANALYSIS OF SOME SIMPLE DEFORMATION HISTORIES

A few deformation histories which are simple to analyze are considered in the following
sections. Some have little direct relevance to actual material tests. We use them here
because they have simple governing equations.

Constant plastic strain rate, ci = const.
In a constant plastic strain rate test, 0'. is a single-valued function of 0'. as shown in

the constant Ii curve in Fig. 3(b). At low temperature or very high plastic strain rate, i.e.
[(D/ci)(O'·/G)"'r = () « 1, we have that 0'. ~ 0'•• For sufficiently high temperatures or very
large values of 0'. the condition () « 1 is no longer satisfied and 0'. starts to deviate from
0'. ~ 0'.,

The relaxation test
The load relaxation test is used by Hart and co-workers for experimental verification

of the constitutive model[7, 9, 11]. The relaxation test has been used because it is assumed
to be a constant state test for practical purposes (i.e. 0'. remains constant for the duration
of the test) and thus reveals the constant state relation eqn (4) as well as the current value
of the state variable 0'•• Of course 6· > 0 during the test (by eqns (4)-(6)). The implicit
assumption is that the accumulated change in 0'. is small compared to the change in 0'•.

The load relaxation test is shown schematically in Fig. S. The specimen is allowed to
undergo some loading history (e.g. a gradual upward movement of the load point P in
Fig. S), the load point is then fixed for the duration of the test. In the following analysis,
t = 0 corresponds to the initiation of the relaxation test.
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Geometric constraint (load point fixed for t > 0) implies that

Assuming no inelastic deformation of the machine, this implies

where (I is the stress carried by the sample, Km the effective stiffness of the loading machine
(which is the actual stiffness times the ratio of the sample length to its cross-sectional area),
and el is the total strain in the sample.

Equations (I), (3), (7), and (8) then imply that in a relaxation test

li = -a.(1 + ar/aJ{l/Km + liE + [(l/..6XI + ar/aJJ}. (24)

The full governing differential equations for U<t) in the relaxation test can be found by .
combining eqn (24) with eqns (2) and (4)-(6). We will only consider the case when ar/6. « 1.
This assumption is often made, either implicitly or explicitly in description and usage of
the relaxation test as applied to Hart's model. The evolution equations of (1* can be written
using eqn (24) as

(25)

The assumption 6r/6. « 1 implies approximately

(26a)

or

(26b)

where l/KT =[l/Km + liE + 1/..6]. If the hardening coefficient is given by eqn (6), eqn
(26b) can be solved as

x =xo{[(m + k)/(k + l)](CGxA -1lI/KT)[l - (Y/xot+ 1] + I} I/IIllH) (27)

where x = (I*/G and y = (lJG. The integration constant Xo is the value of x and y when
y = x and is presumably roughly the beginning of a relaxation test.

Two quantities of interest can be determined immediately. dx/dy at xo. the relative
rate of change of (1* to that of (I. is by eqn (26b)

Also, the total accumulation of (1* in an infinitely long test (where y ~ 0) is from eqn (27)

(29)

assuming Ax « XQ. Our analysis depends on the assumption 6r/a, « 1during the relaxation
test. Using (lr = M[(l/Km + l/EX -6»1/.... in the relaxation test this condition is equivalent
to the following consistency condition:

(30)
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That is, if eqn (30) is not satisfied then ur cannot be neglected in the analysis as in the
paragraphs above.

Continuing with the assumption that dr is negligible, the condition of constant state
(ur « u.) and cqn (28) imply that the relaxation test is a constant state test only if the
condition

(31)

is satisfied. For the limiting case of an infinitely stiff machine, where Ki 1 = I/.,/{ + liE
:::::: l/G, eqn (31) becomes

ext -1lI« 1. (32)

Equation (31) restricts conditions for which the relaxation test is a constant state test.
From eqns (9) and (6) the visco-plastic approximation is dx/doc =Cxl -,"; the term Cxl

-,"

is the usual tangent modulus (normalized by G). Therefore, the relaxation test can be
approximated by a constant state test if the tangent modulus of the "plastic" element is
small compared to the effective elastic stiffness of the machine-sample combination. Ifeqn
(32) is not satisfied there is no machine for which the constant state assumption is justified.

Constant inelastic strain rate
The governing equations for the evolution of (1. and (1* in a constant f. test can be

obtained using eqns (4a), (Sa), (6) and (7a). They are

(33a)

(33b)

Note that, for a given inelastic strain rate, (1r is completely determined by eqn (2) so (1r is
decoupled from the equations governing (1. and (1*. Eliminating t in eqn (33), we obtain,
in terms of the dimensionless quantities x = (1*/G and Y = (1JG

dy/dx = {I - b1x'"[ln(x/Y)r 1f)'}{b2x(Y/x)l[ln(x/y)] -W.}-I

=~~ (~

with

The initial condition for eqn (34a) is

y(x = xo) =Yo (34b)

where Xo is the initial dimensionless hardness and Yo the initial dimensionless (1•.
The behavior of eqn (34a) for sman values of 151 and 152 will now be examined on the

phase plane. This problem has been investigated by Hui[8] using matched asymptotics
(note: Hui[8] defines x and y differently). A typical point on the phase plane is denoted
by (x, y). The region of interest in the phase plane is x > 0, Y > 0, x > y. Only part of this
region is of practical interest since the hardness (1* is always expected to be much smaller
than G, i.e. x « 1.

Define the isocline y =g(x, b) by the set of points where solutions to eqn (34) have
slope b. The function g(x, b) is thus defined implicitly by

f(x,g(x,b» = b (35)
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Fig. 6. Phase plane for constant t test. Isoclines of constant dy/dx are marked as well as a possible
stress trajectory.

where [(x, y) is defined in eqn (34). Several isoclines are shown schematically in Fig. 6.
Except when b == 0, one cannot find a closed form solution for the isocline. However, it is
possible to show analytically the following properties.

(a) For any b ~ 0, there exists a unique curve y == g(x,b). Furthermore, the isoclines
are non-intersecting (except at the origin) with g(x, bl ) > g(x, bz) if bz > bl .

(b) For any given b ~ 0, the vertical distance from a point y lying on the curve
y == g(x,b) to the line y == x, i.e. x - g(x,b), is a monotonic increasing function of x for any
fixed b. The slope of each curve is less than one for all x > O.

(c) The asymptotic behavior of this family of curves for small values of x is

(36)

The isocline for b == 0, in which case i == «, is given by

for all x.

Clearly a solution curve crosses an isocline g(x, b) from below if and only if the slope
of the solution curve is more than the slope of the isocline at the point of intersection

[(x,g(x,b» > dy(x,b)/dx.

Two isoclines are of particular interest: the curve g(x, b == 0) and the curve g(x, b == 1).
Under conditions of low temperature, the parameters ~l and ~z are extremely small. This
means that the maximum of the curve y == g(x,O) occurs at x(o) » I (or (1$ »G). Small
values of 01 and ~2 imply that the curves y == g(x,l) and y == g(x,O) are close to each other
and also close to the line y == x in the region where x« I.

The solution of the initial valued problem y(xo) == Yo with Xo and Yo « I, must cross
the curve g(x,l) but cannot cross the curve y == g(x,O). The solution, squeezed between
these two curves, must therefore be well approximated by either one of them. It is

US H.6-C
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Fig. 7. Simulation of constant inelastic strain rate test. (1., (1*, oc are determined by numerical
integration of eqns (33) and (5). !l,.p is calculated from (1. using eqn (11). Parameters (listed in the

text) are chosen so that a ". oc.p but the error bound is still applicable.

anticipated that the solution should be much closer to the curve g(x, 1) than to the curve
y = g(x,O) since the isoclines themselves have slope very close to unity. This is supported
by the asymptotic analysis of Hui[8]. The above analysis is shown schematically in Fig.
6.

The argument just presented (in fact the original motivation for Hui[8] and the more
general error estimate presented previously), shows why the visco-plastic approximation
works at low temperature for constant inelastic strain rate. Solution curves y(x) have very
large slope for y not near x and are constrained very near the curve y =x once y is
sufficiently large.

Numerical example: constant inelastic strain rate
We use the case of constant inelastic strain rate e to test and illustrate the error

estimates we have made. The three differential equations, eqns (Sc), (33a), and (33b) (using
eqn (6) in eqn (Sc» are numerically integrated. Plots of (x, (1*, (1. vs strain e (which is also
normalized time for this test) are shown in Fig. 7. Also plotted is (XyP' the visco-plastic
strain predicted by eqn (11) using CT••

Parameter values used in this simulation are: m =4, '" =0.15, k= 7, Die = 1,
e = 1 x to- S

, J( = G, CT*/G = 10- 3 at t =0, (1. = (X = 0 at t =O.
The values of Die and e correspond to deformation at fairly high temperature or low

strain rate where the visco-plastic approximation is not expected to be accurate. Though
there is no visible change in either ex or CT* before CT. reaches CT*, the curves for (X and Q(yP

are visibly separate as are the curves for CT. and CT*. For much smaller D/s the (X and Q(vp

curves would be indistinguishable as would be the (1. and CT* curves.
At the end of the simulation, when (1JG = 1.73 x 10- 3, the numerically predicted

value for ex is 2.67 x 10-4 which is greater than tx.p by 0.66 X 10- 4
• The error bound

estimate eqn (22c) predicts .1.(Xmln = 1.15 X 10- 4
• Thus the error in using the visco-plastic

approximation is a little over half of that predicted by the error bound estimate. The rough
error bound in eqn (23b) slightly underestimates the error at 0.36 x 10- 4•

CONCLUSION

We have reviewed Hart's law for inelastic deformation in the simplest possible form:
small strain, uniaxial deformation with positive load. The basic nature of the law is
somewhat clarified by the realization that it is well approximated by a simple combination
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of classical components at low temperature: two linear springs, a non-linear dashpot and
a work hardening rate-independent plastic element.

An error bound for the visco-plastic approximation (eqns (21c), (22c), and (23b)) for
a fairly general class of load histories, has been found in terms of the peak load and the
total time of the test.

The results presented do not address the accuracy of the visco-plastic approximation
at every instant in time for rate quantities. In fact, the approximation may be very good
for stress and accumulated deformation while poor for instantaneous rates during some
parts of the deformation history.

One could presumably use the bounds presented here to determine whether the visco­
plastic approximation could replace the full constitutive law in numerical simulation.
Alternatively, for a given desired accuracy and loading conditions there exists a range of
values of D for which the full constitutive law is tolerably approximated by the visco­
plastic approximation. If the value of D describing the material of interest is in this range
then, in the numerical computation, one can use the largest D in the range without
compromising on accuracy. This procedure may reduce the stiffness of the governing
equations enough so that it is unnecessary to explicitly use the visco-plastic approximation
in the numerical integration.
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